Editing
What Telescope
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Choosing a Camera == ===== Deep sky ===== ----There are lots and lots of different cameras out there with which to do astrophotography. We tend to recommend second-hand Canon or Nikon DSLRs due to software support and cost savings, but it's up to you to do research on which one is the best for your needs. DSLRs in general are recommended because they have fully adjustable shooting settings, and shoot in raw formats which don't mess with the data before you get a chance to process it. Generally newer cameras will have lower noise and better sensitivity than older cameras, plenty of great things have been done on old Canon 500Ds and it's unlikely you'll reach the limits of the camera for a long while. * We highly recommend checking out [https://nighttime-imaging.eu/ NINA] for computer controlling your camera. Its a free and open source program created by /u/isbeorn86 * They also have an [https://discord.gg/zyZryN active Discord server] where you can check out the latest builds, leave suggestions, and get rapid support if you have problems with the software, or are just starting out. Often you'll hear about IR-modded DSLRs. This process removes the IR block filter from the camera, the purpose of which is to block light outside of the visual spectrum for everyday imaging. This filter presents a problem for imaging nebulae, a lot of which tend to emit in IR, so getting an IR-modded camera will really help to pick up these faint objects. You can expect about a 75% increase in sensitivity in these wavelengths depending on the camera. . If you can find such a camera premodded for sale it'll be worth picking up. Both Canon and Nikon have made their own IR sensitive DSLRs in the past (e.g. Canon 60Da and Nikon D810), but these are regarded as horribly overpriced. It's often cheaper to do the work yourself if you're confident taking your camera to pieces or to have it done by another company or individual. ===== Canon 1100D Warning ===== Avoid buying a Canon 1100D (T3 non-i version), They have issues with sensor bloom or some similar defect which leaves black lines under bright stars at long exposure. [http://i.imgur.com/Y3RQVws.jpg See here for example.] Some more advanced users use monochromatic CMOS or CCD cameras. Some of these are cooled and have lower noise than DSLRs but can really only be used for astrophotography. These aren't necessarily recommended for beginners, but if you are serious about getting into the hobby a dedicated mono camera is another great way to start. I will include some information about mono cameras, but they are mostly outside of the scope of this article. ===== Planetary ===== ----Planetary imaging is an entirely different barrel of monkeys to DSOs, as you may be beginning to realize. As the acquisition and processing are totally different (DSO focuses on long exposure with tens to hundreds of frames whereas planetary focuses on short exposures with thousands of frames), it requires a different type of camera entirely. For this reason DSLRs are generally not recommended for planets. One of the most prevalent planetary camera manufacturers is ZWO, who make the generally low-cost ASI range of cameras. These offer high framerate captures and good sensitivity. Other options are available but this is what I use so it's what I can recommend. A good example of these cameras is the ubiquitous ASI120 which is used by many imagers on the subreddit. Planetary can even be done with modified cheap webcams such as the Microsoft lifecam, as recommended further into the guide. Since high framerate is desirable, USB3 is a good thing to have on your planetary camera and laptop. Planetary cameras come in mono and color, depending on how much effort you want to put into imaging. Mono has the advantage of sensitivity and some can also be used as effective guidecams for your DSO imaging too. They also allow you to shoot in high IR wavelengths such as CH4. The downside to this is that each channel must be processed separately then combined and colour calibrated, meaning about 4x as much work as taking a single video in color and processing that directly. DSLRs tend to not be recommended for planetary. It is possible to take pictures of planets, but the only way DSLRs are able to get high enough framerates is using planetary mode in BackyardEOS which records via live view. This is usually not 1:1 pixel resolution as the sensor is resampled, and this means a lot of detail and definition is lost. The Canon DSLRs which can natively do a 1:1 region of interest are the Canon 60Da, 60D and 550D. DSLRs also tend to have larger pixels than planetary cameras which means the image will appear smaller with the same focal length.
Summary:
Please note that all contributions to !astrophotography Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
!astrophotography Wiki:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Create account
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
Edit source
View history
More
Search
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Page information